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Abstract 

Within the context of the theory of stochastic phase spaces, introduced in some earlier 
papers, a systematic mathematical procedure is developed for expressing quantum 
mechanical observables as generalized functions on a stochastic phase space. The states 
in such a theory are normalized, positive semidefinite, continuous functions of the phase 
space variables, satisfying marginahty conditions appropriate to the stochastic nature of 
tile underlying phase space. The action of a general quantum mechanical observable on 
the state space is then shown to lead in general to formal differential operators of finite 
or infinite order. Explicit computations of some typical operators are made to illustrate 
the theory. As a useful practical application, the theory is employed to derive a Bloch 
equation from which the Husimi transform of the canonical equilibrium state is then 
computed, after expressing it as an infinite series in powers of h. 

1. Introduction 

The procedure for cahbrating any given measuring apparatus d is intrinsi- 
cally stochastic in nature, since it involves repeated comparisons between the 
readings of that particular apparatus d and another apparatus ~¢o, which is 
either chosen as a standard (such as the standard meter) or which has already 
been calibrated. Thus, no outcome of the measurement of any single observ- 
able A is ever exhaustively describable by a single number c~, but  rather a 
probability measure/~a has to be included in the description. This measure 
embodies the calibrating procedure in the following way: I f I  denotes any 
interval (or, more generally, Borel set) on the real line, ~za(/) is a measure of 
the confidence that when the reading a is obtained with ~¢, the "actual value" 
of A was wi th in / - i . e . ,  roughly speaking, if a totally random set of  infinitely 
precise values of  A has been prepared by using the standard d o, then the 
probability of  obtaining with ~¢ a reading c~ equals g~(I)  when the prepared 
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value falls within I. (Naturally, the term "infinitely precise" warrants a careful 
operational definition-cf. Prugoveeki, 1976b, Appendix, and the references 
quoted therein.) We shall call the pair (a, #a) a stochastic point on the real 
line, and we shall say that & = (a, pa) is sharp if #a({a}) = 1, and that other- 
wise it is nonsharp or fuzzy. 

Let us note that conceptually a stochastic point & is distinct from a "value" 
a even in the case when & is sharp, since even then it is the outcome of an in- 
trinsically stochastic calibrating procedure, and the probabilistic statement 
that "the value a has been measured with a 100% confidence margin" is distinct 
from the categorical statement that "the system has the value a."  In this con- 
text, it is interesting to note that in principle a sharp stochastic point & can be 
obtained only if a is an isolated value in the point spectrum of the observable 
A, but that this is a necessary and not a sufficient condition. For example, no 
actual measurement of  a spin component is ever totally sharp, but can only be 
made "very nearly" sharp (cf. Prugove~ki, 1977). 

The above terminology is of little consequence, however, as long as a single 
observable A is measured, and as long as it is believed that arbitrarily precise 
measurements can be performed in principle. Indeed, the n0nsharpness of actual 
measurements is usually taken into account by standard reduction-of-data 
procedures, routinely applied before inserting the raw experimental results into 
any given theoretical framework. Furthermore, if p().) is any given probability 
distribution of sharp values of  A, then the probability distribution/~(a) corres- 
ponding to the stochastic points & is easiJy seen to be (Aft and Emch, 1974; 
Prugove~ki, 1976a) 

/5(a)= f p(X)po~(d;~) (1.1) 

However, this situation changes drasticaUy as soon as for some given observ- 
able~A there is reason to believe that there is a fundamental (and not just 
experimental) upper limit to the accuracy with which A can be measured (e.g., 
if there turns out to be a fundamental length in the measurements of position 
of elementary particles), or if two or more incompatible observables are measured 
simultaneously. In that case, there can exist probability measures on sample 
spaces of fuzzy stochastic points that are not derivable from conventional proba- 
bility measures on spaces of  sharp sample points, as was the case in (1.1) (of. 
PrugoveSki, 1976a). 

A notable example of  a class of  measures that are not derivable from measures 
on spaces of sharp sample points are those corresponding to the probability 
densities pg(q, p) (of, All and l~ugoveSki, 1977a, b), 

pg( q, p) = h -N Tr [ U( q, p)gV*( q, p)p] 

U(q,p) = exp p-  exp - f f q .  P 

P" Q=PlQ1 +p2Qz +'''+PNQN, 

(1.2) 

(1.3) 

q. p=qlP1;+qzP2 +.''+qNPN (1A) 
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assigned to every density operator p describing the state of a spinless, non- 
relativistic quantum system with N degrees of freedom. In this context the 
generatorg of the phase space representation is a positive operator of trace 1 
which determines the confidence measures of the stochastic phase point (•, p), 

Cl = (q, ~(g)), t2(qg)(dq') = X (qg)(q ') dq' (1.5a) 

l~ = (p, V(pg)), v(g)(dp') = X(pg)'(p')dp ' (1.5b) 

by determining the confidence functions X(q g) and X~p )' ofc~ and/O, respectively 
(Prugove~ki, 1976a), as follows: 

?((g) (q') = X (g) ( q ' -  q), X(o g) (q') = (q' Ig[ q') (t .6a) 

X(pg)'@ ') = x(og)'(P ' -  P), X~o )'(P ') = (P' [glP') (1.6b) 

Thus, pg(q, p) is interpreted (Prugove~ki, 1976a, b; Ali and Prugove~ki, 1977a) 
as the probability density of obtaining the stochastic points c? and/~ as outcomes 
of the simultaneous measurement of the position and momentum observables 
Q and P on an ensemble in the state P (concrete measurement procedures of 
this kind are discussed in Prugove~ki, 1976b). As might be expected, pg(q, p) 
is not derivable from a probability distribution at sharp phase space points 
(All and Prugove~ki, 1977a); however, it satisfies the following marginality 
conditions: 

Pg(q,p)dp = f x(qg)(q')(q'[p]q')dq ' (1.7a) 
NN NN 

Pg(q,p)dq = f x(g) '(p ')(p' lp[p')dp ' (1.7b) 
~N ~N 

which are in keeping with (1.1) and the fact that (q ' lp lq ' )  and (p ' lp lp ' )  are 
probability densities at sharp position and momentum values, respectively. 

A particularly important case of representations (1.2) for p occurs when 

g(S)= [e(S))(e(S)[, $ = ($I, S2 . . . . .  SN), $1, $2, . .  . , SN> 0 (1.8) 

N ( R N e(S)(x) = v=lII (~hsv2) -1/4 exp - 2hsv----2], x E (1.9) 

The resulting probability densities pg(S) (q, p) are usually called Husimi trans- 
forms (Husimi, 1940), whereas, in the context of the present interpretation, 
they are referred to as Ps~distribution functions (Prugove6ki, t976b). Husimi 
transforms have already proved useful in extending results in statistical mech- 
anics from the classical realm to the quantum case (McKenna and Frisch, 1965, 
1966; Prugove6ki, 1978c). Typically, this type of problem requires not only 
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that quantum states be represented by the probability densities pg(q, p), but 
also that expectation values of observables, the actions of the generators of 
motion, etc,, be represented in terms of objects directly related to the space 
~(Pg) of probability densities on the stochastic phase space Pg. 

In Section 2 we present a general method for assigning to an operator A 
in the Hilbert space 3¢'(and, in particular, to an observable) a function or, in 
general, a tempered distribution Ag(q, p) so that the following equation holds: 

Tr (Ap) = f Ag(q, p)l)g(q, p) dq dp (1.10) 
r 

Then, in Section 3, we extend this result by showing that a (formal) differential 
operator A} g) can be also assigned to A in such a manner that 

A ~) pg(q, p) = (Ap)g(q, p) (1.11) 

The methods presented are applicable in general, but we illustrate them 
primarily on the case where g is of the form (1.8). In that instance, as an 

• important special application, we use the derived results to obtain a Bloch 
equation, from which the Husimi transform of the canonical equilibrium state 
is then computed by expressing it as a power series in h. 

2. The N(Pg) Representation Space 

Let us denote by Pg the set of all stochastic phase space points (g/, p), 
q,p E Ru, withq and/~ given by (1.5) and (1.6). We shall refer to Pg as the 
stochastic phase space corresponding to g and shall designate by ~(Pg) the set 
of all Pgdistribution functions (1.2) obtained as O varies over all density 
operators in the Hilbert space acg = L2(NN). The family ~(Pg) of probability 
densities forms a continuous phase-space representation of quantum mechanics 
on L2(N N) (in the sense of All and Prugove~ki, 1977a) if and only if the 
mapping p ~-~ Og(q, P) satisfies the criterion of informational completeness, i.e., 
if and only if it is one-to-one. 

It has been established by Ali and Prugove~ki (I 977b, Appendix A), that 
informational completeness is present if and only ifgw(q, p) =~ 0 almost every- 
where in P, where, in general, for any trace-class operator X, we write 

2w(q, p) = Tr [V*(q, p)X] (2.1) 

Let Lz(P) be the Hilbert space of all complex-valued functions on P that 
are square integrable with respect to the measure 

dP = h-N dq dp (2.2) 

If We "denote by Y(q, p) the symplectic Fourier transform off(q, p) E Lz(P): 

f(q, p) = t.i.m, f exp [i/h:(q. p' - p" q')] f(q', p') dr '  
p 

(2.3) 
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then equation (A.12) in the aforementioned Appendix A is observed to be 
equivalent to the statement that 

hNX.g(q, P) = ~w(q, P)Xw(q, P) (2.4) 

where, as a generalization of (1.2), we set 

Xg(q, p) = h-N Tr [ U(q, p)gU*(q, p)X ] (2.5) 

and the bar denotes complex conjugation. Setting g = X in (2.4) we obtain 

g(q, P) =- L(q, P) = h-N[gw(q, P) [2 (2.6) 

so that, by informational completeness 

g(q, p) > 0 (2.7) 

almost everywhere in 1-'. 
Noting that the inverse symplectic Fourier transform of f (q ,  p) satisfies 

f(q,p) = f exp [i/h(q. p ' -  p. q')]f"(q',p')dr' (2.8) 
F 

we easily establish that Xw(q, P) in (2.1) coincides with the symplectic Fourier 
transform of the Weyl transform Xw(q, p) as defined by Pool (1966). Since the 
symplectic Fourier transform preserves the norm in L2(F): 

Ilfllr = [If lit, [I f l i t  z = f If(q, p)l 2 dP (2.9) 
F 

and therefore it is one-to-one, we conclude that the following holds true. 

Theorem 2.1. If the mapping fi ~ fig(q, p) is informationally complete, 
there is a one-to-one mapping fig(q, p) r--+ fiw(q, P) of ~(I'g) onto the 
space ~w(I') of all Weyl transforms of density operators, so that the 
corresponding symplectic Fourier transforms ~g(q, p) and Pw(q, P) 
satisfy (2.4). 

Since any Hilbert-Schmidt operator X can be recovered from Xw(q, P) 
(Pool, 1966) by setting 

X = f U(q,p))2w(q,p) dP (2.10) 
F 

where the convergence of the above Bochner integral is in the weak operator 
sense, we observe that for any given stochastic phase-space representation 
~(Fg), the density operator fi can be recovered from the corresponding Pg- 
distribution function fig(q, p): 

p = f U(q,p)~g(q,p)[~w(q,p)]-1 dqdp (2.11) 
I" 
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Using the convenient notation 

i(q,P) = f ( - q , - P )  (2.12) 

and taking the symplectic Fourier transform of both sides of (2.6), we obtain 

g(q, P) = h~N (gw * gw) (q, P) = g(--q, --P) (2.13) 

where the asterisk denotes the convolution: 

( f  ,g)(q,p) = f f(q',p')g(q - q',p - p') dF' (2.14) 

Since we easily obtain from (2.1) that [Xw(q, P) I is an even function of q and 
p, we arrive at the conclusion that both g(q, p) and ~(q, p) are even, positive 
semidefinite, and continuous functions. 

Another feature of the generator g that we shall need in the sequel is the 
differentiability of g(q, p). Writing in accordance with (1.3) and (2.1) 

and assuming that in the spectral decomposition 

g= ~ ]ej)Xj{ej[, ~ Xj= 1, Xj~> 0 (2.16) 
/=1 j 

all the elements of the orthonormal basis el, e2,. •., are in the domains of 
definition of 

pk = p ~ l . . ,  p~cN, Qt= Q111.. " Q ~  (2.17) 

we conclude that 

~qk~pl gw(q'P)=(--l)'l '\~) (--~P" (~q P ) ]  

(2.t8) 

and therefore, that the partial derivatives of if(q, p) also exist. 
Now we turn our attention to proving that a representation Ag(q, p) satisfy- 

hag (1.10) exists for any observable A. For that purpose we introduce the space 

~g(~2N) = (~w(q,P).~(q,P)IJ 7C 5°(~2N)} (2.19) 

of test functions obtained by letting j 7 vary over the Schwartz space 5¢(~ 2N). 
We equip ~,~g(R 2N) with the natural topology induced by the mapping 
f~-+gw' f (i.e., the topology under which this mapping is a homeomorphism). 
Similarly, we denote by 5¢g(~ 2N) the space of test functions f which are the 
symplectic Fourier transforms (2.8) off" C ~g,  and we equip 5Pg with the 
natural topology induced by this transform. 
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Theorem 2.2. To every operator A on L2(NN), which is either bounded 
or unbounded and symmetric with domain containing 5f(NN), corres- 
ponds a unique distribution Ag(q, p) on 5~g(N aN) for which 

(~ t A ~) = f Ag(q, p) X;' ~ (q, p) dq dp (2.20) 

whenever the function 

X~g ' ~ (q , p) = h-N( ~ [ U(q, p)gU*(q, p) t) ) (2.21 ) 

belongs to 5Pg(N2N), and in particular if ~, ~ E 5P(RN). Further- 
more, 

"4g(q, P) = [g~w(q, P)] -1-dw(q , P) (2.22) 

where, in general, Aw(q, P) is a tempered distribution on ~(~2N), 
and in particular, ifA is Hilbert-Schmidt -/tw E L2(~ 2N) and Ag(q, p) 
is an almost-everywhere-defined function. If A is symmetric, the 
distribution Ag(q, p) is real. 

Proof To prove the first part of the theorem, we note that in view of the 
linear isometry (Pool, 1966) between the Hilbert spaces of the set of all 
Hilbert-Schmidt operators X, and the set of their Weyl transforms 2 XNw(q'P)' 
ifA is a Hilbert-Schmidt operator, then for any ¢, ~ E jct~[ = L ( ~ ) ] ,  

( ¢ IA~)  = tr[A [ ~)(4)t] 

(,) -p )X  w ¢(q,p) exp -~q. p dP (2.23) 
P 

where, in accordance with equation (2.1), 

2~' ~ (q, p) = ( 0 1 U*(q, p) ~k ) (2.24) 

In obtaining (2.23) we have used the definitions of the scalar product on LZ(F) 
and that of two Hilbert-Schmidt operators, and the fact that if X* is adjoint 
to X, then 

Xw(q,p) -p)"  exp - tz  q • p (2.25) 

By Cressman (1976), (2.23) may be extended to the case where A is any operator, 
bounded or unbounded and symmetric, with domain containing 5¢( N N). In that 
case Aw(q, p) is in general a tempered distribution, and ¢, ~ have to be chosen so 
th ~~' ¢ 5P(NN)--i.e., so q~, ~ E at X~ E that 5f(NN). Upon using (2.24) in (2.23) 
we get 
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where now 20, ~ ~ .~g(NZN). Using (2.25) and the fact that g = g *, we may 
rewrite (2.263 as 

( ~ I A ~J ) = f Ag(--q' -p) 22' ~(q' p)dq dp (2.27) 

where we have set 

Ag(q, P) = [gw(q, P)] -l'4w(q, P) (2.28) 

Since A. is unique, it follows that .4g is indeed a unique distribution on 
~ g ( ~ / ~ ) .  Finally, upon using the definition of the symplectic Fourier trans- 
form of a distribution, 

f .Ag(--q,-p)f(q,p)dqdp= f Ag(q,p)f(q,p)dqdp (2.29) 

[which is easily checked to be in agreement with Parseval's inequality when 
Ag E L2(IR ZN)], we obtain (2.20), with Ag in general a unique distribution on 
2;Pg(~ 2N). 

To prove the reality of Ag(q,p) when A =A*, we note first that if 
f E  5e(R2N), then ~ing an extended version of (2.10) and the uniqueness 
of the distribution Xw, we have 

f ~2*(q,p)f(q,p)dqdp=I.~w(_q,-p)exp(-£q.p) .f(q,p)dqdp (2.30) 

in analogy with (2.25). Hence setting X = A = A *, and taking f in ~ g ( R  2N) 
we get, using equation (2.28), 

IAg(q,p)f(q,p)dqdp=f~w(-q,-P)[gw(q,P)]-lexp(-~q'P) 

x f(q,p)dqdp (2.3t) 

On using (2.25) in (2.31) we get 

Equation (2.25) is easily seen to imply that for f E  5¢g(R 2N) and fpositive, 

f Ag(q,p)f(q,p)dqdp = f Ag(q,p)f(q,p)dqdp (2.33) 
[] 

As an example o f  a Pg-distribution function, let us consider the ~ ( F g )  
representative o f  the canonical state 

1 
- (2.34) p (3) = Z-~I e-3 H, [J kT 

Z 3 = Tr e -3H (2.35) 
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where g is given by equations (1.8) and (t .9) and H is the N-dimensional 
anisotropic oscillator Hamiltonian 
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N 
1 H = ~ ~ (Pv 2 + oovZQv 2) (2.36) 

V = I  

In that case the Weyl transform of p (~) can be computed explicitly (Emch, 
1976): 

N [ lo[COu 2+ 1__~_ 2~ i ] 
P~'(q'P)= v=,1I exp [ - - ~  v i~  qv oovh2pv j - ~tqvpv (2.37) 

1 
Since it is easily established that 

(2.38) 

~(S)(q, p) = II exp - + sv2pv2 i 
v =1 - "  ~hqvp~ (2.39) 

we obtain by (2.4) and (2.8) 
N 

(D exp (--  Pg(s)(q,p)=Tr_N]~ I 1 qv2 Pv2t (2.40) 

Ov h oar = hs~ 2 + - - '  o2v = - -  + Ovw~, (2.41) 
09  v S v  2 

It is also interesting to note that 

~(S)(q,p)=h-N 1I exp -- +sv2pv =g(S)(q,p) 
v = l  

(2.42) 

3. The ~(Fg) Representation of Superoperators 
The distribution Ag(q, p) enables us tp compute directly within the ~(Pg) 

formalism the expectation value (A)p in (1.10) for the observable A. However, 
occasionally the action of the superoperators Al, Ar and A on p 

Atp=A p, Arp =pA, Ap =½(A,p} (3.1) 

can be of independent interest, as we shall see later on when we discuss the 
Bloch equation. Furthermore, to deal with the Liouville equation 

iO/Otp(t) = Hp(t), Hp =h- l [H,p]  (3.2) 
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directly within the N(Pg) formalism we have to be able to express the action 
of the superoperator - i l l  on 0 in terms of a Liouville operator L (g) acting on 
Og(q, P) in such a manner that 

L(g)pg(q, p) = - iT r  [U(q, p)gU*(q, p)(Hp)] (3.3) 

The manner to proceed is by noting that in accordance with (2.4) and 
(2.8) 

(Ap)g(q ,p)= ~ exp . p q) "~w(q,p ) ( A p ) w ( q , p  ) q p (3.4) 
t2 

Upon using the easily verified relation 

(Ap)~(q ,p )  = exp - q'(p - p ) Aw(q ,p )ow(q - q ,P - p')dr' (3.5) 
F 

which is to be interpreted in an appropriate distribution theoretic sense, (3.4) 
yields 

A}g)pg(q,p) = (Ap)g(q,p)  = h -N I exp (q" Pl - P" ql) - ~ q2(Pl - PE) 

X~w(qa, Px)gw(q2, P2) [~w(q l - q2, Pl - P2)] -1 

x ~tg(q, P)Pg(ql - q2, Pl - P2) dql dq2 dPl dp2 (3.6) 

To exhibit A} g) as a formal differential operator_(of finite or i_nfinite order) 
we shall assume throughout this section that both gw(q,P) and [~(q,p)] -1 are 
boundary values of entire analytic functions in 2N complex variables. For 
example this is the case with g(S) as in equation (1.8), for which 7gw(s)( q, p)  
is given by (2.39). As a matter of fact, since by (2.18) the coefficients akt of 
the Taylor expansion of~w(  q, p) at q =p = 0 are 

(_l)Z / . \ lk+ll 
= t ~  ) Tr(Q/gP k ) (3.7) akl  

we see that there is a large class of representation generators g satisfying this 
requirement. 

With this restriction in mind, we notice that the right-hand side of (3.6) 
involves symplectic Fourier transforms of expressions of the type 

h =Yhl (3.8) 

where h and h~ are in general distributions on ~ g  and f i s  the boundary value 
of an entire analytic function. In case hi is itself a function on I', the product 
distribution h becomes simply another function h on F, and we may write 

h(q,p)  = f (q ,  p)hl(q, p) (3.9) 
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Furthermore, f has the Taylor expansion 

f(q,p) = ~ Ckl qkpl (3.10) 
k,1 

qk ,~kl_k2 q~,  pl=p~lp~2.., ptnn (3.11) 
= '~ / I  4 2  " ' "  

Let us formally write 

( ~  ~__p) ~1 k+l I 
f ' = ~ Cktoqk~'tvt, (3.12) 

k,  l 

in the obvious standard notation. We shall then write the symplectic Fourier 
transform h of the distribution h in the form 

Actually, taking a bit of liberty with the notation, we shall write 

h(q,p) =f  -~ , - ih  hl(q,P) (3.14) 

For many functions h t (e.g., when h'l is a polynomial in q, p) f(ih(8/Op), 
-tt~ (3/3q)) can be considered to be a standard differential operator. Otherwise 
we shall interpret the right-hand side of (3.14) as being simply the symptectic 
Fourier transform of the distribution h. 

Using the notation introduced in (3.14), equation (3.6) may be put in the 
compact form 

A}g) l o , O\ 

=hN 

where for two functions f, g on I" 

= exp - ih~m " - f(ql, Pl)g(q2, P2) 
p l = P 2 = p  
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An expression similar to (3.15) has also been obtained by Agarwal and Wolf 
(1970). The operator A} g), which formally resembles a differential operator may 
now be written as 

3 = 3 3 exp [ -  \~p ~qq] 

and similarly, 

~p-ifi~q)Ag(q,p)]g tt'h~p,-ih~) (3.17b) 

Thus the operator L (g) introduced in (3.3) becomes 

~Oq 3 =--i{exp -ih 3-p " exp[-ih 3 ,3  

= 3,i h 3 xgw(__ih_~ p ~q)[~ [ 3 ,  3\Hg(q,p)] 

=_1[. 3, Xgw tth ~p -ih ~-~q ) (3.18) 

and finally, 

A(g) (~, ~--p)= l{exp [--ih (~p, 0O--q),2 ] +exp [-ih(;,~q)21] } 

(-ih~p, ih~q) [ ( ap -ih~)Ag(q,p)] 

- { aqO'-ih~q) 

where we have defined the operator A (g) as 
A(g)pg(q, p) = Tr IV(q, p)gV*(q, p) Ap ] 

with A as in (3.1). 

(3.19) 

(3.20) 
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Equations (3.1 8) and (3.1 9) look somewhat complicated. However, in 
specific instances the expressions collapse into fairly simple forms. In this 
connection, it is instructive to study exampIes where the operators A (g) are 
po!ynomials in 8/8q and 8/8p. For this purpose it is useful to rewrite (3.19) 
in the form 

(g)[8 ~.~_q,~p)pg(q,p)=_~ 8\ 1 [exp (_ih ~pt. ~qq2) + exp (_ih_Sp2. ~ql) ] 

xffw(-ih ~--~l - ih g~--'ih ~ +ih ~q2)gL [ih 3-~-'-ih 2 8ql ' 8pl 8ql] 

x gw - -  - -  - -  

Pl =P2 =P 

(3.21) 

where use has been made of the fact that if f and g are two functions on P, 
then 

~n [f(q,P)g(q,P)] ( 8 ~-~2)n---- f(qI,Pl)g(q2,P2)q1=q2 - -  = (3.22) 
8q n 8qi + = q 

p l = P 2 = p  

and similarly for 8n/sp n. 
Consider now the case where ffw is the one given by (2.39), and Ag(q, p) is 

a polynomial in q and p. Then it is easy to verify that (writing A (s) for 
A(g(s)), A s for Ag(s), etc.) 

[ 8, 8\ 1 [ [ih[ "d 8 
(exp [ -~ 18ql "8p: 8pI" ~ 2  ) 

+ exp . . . . . .  
8p~ 8pi 

[h/l 8 2 0 2 1 8 8 ~] 
x e x p [ - ~ t ~ 1 2 + s ; -  2+ - - ' - ~ - + s  2 - "  

~ql S'2 8Pl 8p2 8ql 

where 

x As(ql , Pl) Ps(q2, P2) ] ql = q2 = q 
Pl = P 2 = P  

N 
1 82 _ ~ 1 82 
S 2 8p 2 = Sp 2 8p 2 

(3.23) 

(3.24a) 
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N 
s2 a a ~ a 2 

_ _  . _ _  = S ~ ,  2 - -  

aql ~q2 aqul ~qu2 
P = I  

(3.24b) 

etc. Thus, since As(q,p) is assumed to be a polynomial, we get 

A(S)/..3~, O\A , 1 [h[1 b 2 02] ]  - e x p  - _ ~ - - + s  2 
]J 

(q ifi 0 hS 2 3 ih ~ h ~P2) 
x A s l+5~-pp2+V~--qq2,pl 20q2 ~ s  2 

( iha hs2 a 
+As ql 2 ~P2 + 2 ~q2 'pl +-2 - - +  aq2 ~ss z 

x Ps(q2,Pz) qll=q2= qp2=p 
(3.25) 

where by an expression of the type (hsZ/2)(O/aq), inside the second square 
bracket we mean a vector differential operator with components (hs~/2)(a/Oqv), 
and so on. 

Consider the case where A = Qv, the position operator. Then, using the 
formal relation 

Tr[U*(q',p')U(q,p)] dF=b(q - q ' , p -  p')dqdp (3.26) 

it is easy to verify that 

a 
Aw(q,p)dP = ih ~p~ 6(q,p)dq dp (3.27) 

so that 

and hence, on using (3.25), 

As(q, p) = qv (3.28) 

Q~) = qv (3.29a) 
2 ~qv 

Similarly, for the momentum operator Pv we get 

hs£ ~ (3.29b) = ap-; 
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From the form of (3.25) it is clear that A(S)(3/3q, 3/3p) is a polynomial in 
q,p, ~/bq, and 3/Op, as is seen for example from equations (3.29), or, for 
example, from the corresponding expression obtained for the free Hamiltonian 

N 

/40=~ ~ 
v=l 2my 

in which case (cf. Prugove6ki, 1978b) 

N 

= + +Pv + - -  - H~S) v=,~ [2my 2s~mv 5 ~p~ 8rnvks 4 0p 2 

(3.30) 

We observe that the leading term on the right-hand side of equation (3.31), 
containing no powers in h, coincides with the classical kinetic energy 

N 

Eo(P) = - -  ~ pv2 (3.32) 
v=l 2my 

and indeed this same feature is also shared by the expressions for Q(v s) and P~) 
in (3.29). On the other hand, if A is an operator for which As(q, p) is not a 
polynomial, such as for example an interaction given by a general potential 
V(x), it will no longer be the case that A (s) is a polynomial in q,p, O/Oq, and 
O/Op. If V(x) is an entire function, then the corresponding interaction Hamil- 
tonian operator It/(s) on~(Ps), and the Liouville operator L (s) = - i  H (s), are 
going to be differential operators of, in general, infinite order (Prugove~ki, 
1978a, b). If, however, V(x) is not an entire flmction, then H/(s) and L (s) can 
only be represented as integral operators (All and Prugove~ki, 1977b, Appendix 
B). 

4. The Bloch Equation for the ~(['s) Representation o f  Canonical States 

In Section 2 we could perform the explicit computation of the Ys-distribu- 
tion function (i.e., Husimi transform) of the canonical state p(~) due to the 
simple form of the chosen Hamiltonian (2,36). In general, however, one has to 
rely on perturbational methods in order to compute p(~)(q, p). The method 
we adopt in this section is in essence the same as the one used in similar 
computations of the Wigner transform, i.e., it coincides with the approach 
initiated by Wigner (1932) and Kirkwood (1933), and perfected by some other 
authors (Saenz and O'Rourke, 1955; Oppenheim and Ross, 1957). It consists 
of computing in the expansion 

1 03) =-- exp (_~t/) = exp(-flE)[1 +~Xl(/~) +~2X2(/~ ) + ' ' "  ] (4.1) 

pv 2 
E(q, p) = ~mv + V(q) (4.2) 
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the terms X1(/3), ×2(/3) . . . .  by iteration, thus obtaining for 1 (e), as well as for 
the partition function Zt3, approximations to different orders of h. The method 
is considered reliable at high temperatures. Alternative methods, such as 
expansions in powers of the interaction term (Chester, 1954), can be adapted 
with equal ease to the present case. 

For a system of N/3 (nonidentical) particles enclosed in a vessel of volume 
"K, we can use the definining formula (1.2) for I (D to recast its ~(Fs) represen- 
tative into the form 

I(D(q,p) = 1.-N/.(s) r(e)o(s) ~ o(s) = U(q,p) e (s) (4.3) t t  \ ~ q , p  ~ c q , p t ~  ~ q , p  

and then compute l f f  ) = Ig(~s )) explicitly. We obtain 
N [ .  

, ( e ) ( q , p ) = H J h 2 1 + ~ _ a l l  exp~-~2mv+/3~/s:) (4.4) 
u=: k 2mvsv ]j 

where q is essentially restricted to the interior of the vessel. The corresponding 
partition function is 

N 
{2,mvt 1/2 

Ze= S zs(e)(q'p)dqdp='f/'N/a H ~-ff£$-] (4.5) 
P--1 

and we note that in the limit s~ -+ 0% namely, for stochastic points that are 
sharp in momentum, we recover from 

p~t~) (q, p) = is(e) (q, p)/Z~(q, p) (4.6) 

the classical expression for the F-distribution function of a canonical system 
of noninteracting particles, i.e., the Maxwell distribution: 

N 

p(43) (q, p) = ~--N/3 1--]- ~ ~ exp --/3 (4.7) 
~=~ \ 2rrrnv] 

In the presence of interactions, we use the Bloch equation reexpressed in the 
~(Ps) space, 

L I(e)(n , n~ 0/3 s ,~ v,  = -H(S)I~ e) (q, P) (4.8) 

as a means of computing successively the ~(Ps) representatives x~(q, P;/3), 
= 1,2 . . . . .  of the different terms in (4.1). Indeed, writing 

I(e)(q, p) = exp [-/3E(q, p)] x(q, P;/3) (4.9) 

H (s) = E + h I-I(1 s) + h H~ s) + " "  (4.10) 

with H (s) obtained from (3.21), we obtain from (4.8) 

0X = exp (/3E)(h HI s) + h 2 H (s) + , - -  ) exp (-/3E)X (4.11) 
0/3 
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Expressing both sides of (4.11 ) as power series in h, and equating their co- 
efficients, we arrive at a system of coupled differential equations that can be 
solved in succession. For example, the first two of these equations are 

0Xl'k exp(13E)H(1 s) exp (-f iE) = 0 (4.12) 

3X__2 + exp (flE)H~ s) exp (fiE)x2 = -exp  (13E)H(1 s) exp (-f iE)  (4.13) a~ 

In order to arrive at a power series expansion (4.10) for H (s), we make the 
same technical assumption as in the Wigner transform case (Wigner, 1932), 
namely, that the potential V(x) is an entire function: 

1 3Lnlv 
V(x) = ~ Vn(q)(x-q)  n, V n - - -  (4.14) 

n=o nl! " " " t i N [  bq~ 1" " " 3q~ -at 

The successive computations of Hi e), H (s), . . .  then become a laborious but 
straightforward task based on the iterative formulas (4.4) of Prugove~ki (1978a). 
For example, in the first order ofh  we have 

1 [ 1 (2  3 )  + 2[3V  3 1 32V~] 

Consequently , solving (4.12) subject to the boundary condition xi(q, P) =- 0 in 
the limit fl -+ + 0, we obtain 

In the second order, taking sl . . . . .  SN we obtain 

(4.16) 

1 ~ 1 ( s 1 3 2 3 3 T / )  1 3 2 V  Is 4 3 2 3 2  v) 
? + 1 3p p 

+ \~qv 33qv Oqu4] +-8-  la 3q~3qv Oqv 
(4.17) 

and the respective correction X2 is of corresponding complexity. However, 
the computation of the partition function Z~ requires that X be integrated 
over phase space. As a result, terms that are linear in derivatives of V can be 
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integrated by parts,  and therefore some simplifications can be achieved. For 
example,  to the first order in h 

~-- 15sv--Smm~2) ] exp [ -~E(q ,p ) l  dqdp  (4.18) 

It is interesting to note that in contradistinction to the Wigner-transform 
method,  which seems to give a zero cont r ibut ion  in the first order of  h (Wigner, 
1932; Landau and Lifschitz, 1958) the present Husimi-transform first-order 
correction does not  vanish. That this has to be so is easily confirmed in the 
limit V(q) -+ 0 by taking the explicit  expression (4.4) and expanding it in 
powers of/3h. This discrepancy between the expansions in h based on the 
Wigner and Husimi transforms, respectively, appears to mark this particular 
technique since it occurs also in the context of  computing quantum correc- 
tions to the classical P-distr ibution function of  a Brownian particle (cf. McKenna 
and Frisch, 1966 vs. Resibois and Dagonnier, 1966). Certainly, this matter  
deserves further consideration. 
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